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NUMERICAL STUDY OF LAMINAR SWIRLED FLOW
IN AN ANNULAR CHANNEL '

V. V. Tret'yakov and V. I. Yagodkin UDC 532.527

The effect of stream rotation on the velocity distribution in an annular channel is studied by the
numerical method. The degrees of swirling corresponding to the initiation of stream separation
are presented as functions of the Reynolds number for different values of the geometrical param-
eter of the channel.

1. It is known that the intensity of processes of heat and mass transfer in annular channels and pipes in- -
creases when swirled flows are used in them [1],

The attempts at an analytical solution of such problems are connected with certain simplifying assump-
tions, For example, the problem of the development of Poiseuille flow in a straight round pipe with stream
rotation was solved in [2]. It was assumed that the changes in the flow caused by this rotation are small. This
allowed the authors to solve the problem in a linear formulation. An approximate calculation of the develop-
ment of swirled flow of a viscous incompressible liquid in a cylindrical pipe was the subject of [3], where as-
sumptions were made that the radial velocity component and its derivative with respect to the radius are small,
as well as the assumption that the axial velocity component differs little from its average value over the cross

section. ‘
Another approach to the solution of such problems is the numerical integration of the equations of motion
of a viscous liquid. The velocity profiles of swirled flow in a round pipe were calculated in [4] using the method
of [5]. It was found that the assumptions of [2] are not always satisfied.
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The numerical method of calculation of [5] will also be used in the present work,

II. The steady laminar flow of an incompressible liquid in a straight annular pipe in the presence of
swirling of the stream at the inlet is analyzed. It is assumed that the flow is rotationally symmetrical, ex-
ternal mass forces are absent, and the density p and coefficient of dynamic viscosity u are constants,

In a cylindrical coordinate system the Navier—Stokes equations for such flow have the form

ou ou ap 1,
— U — = — = —V%,
Uar + 0z 0z Re‘7
_0Ov v w? ap 1 v
”a_r+”az r 6r+ Re ( r )’ (1)
dw Oow W / zw——@—)
o YT + r R (V rt
G v o g
or r 0z

Here u, v, and w are the axial, radial, and azimuthal velocity components, respectively, normalized to the
average value ugy of the axial component over the radius; p is the pressure, normalized to puzav; Re =ugy/vis
the Reynolds number, calculated over the width a =Ry — R, of the annular gap; vis the coefficient of kinematic
viscosity; R, and Ry are the radii of the outer and inner cylinders, respectively; V2= 8%/8r? + r~18/8r + 6%/52%
All the linear dimensions are normalized to the characteristic dimension a of the problem.

For the flow under consideration the conditions of attachment must be satisfied at the walls:

U=y =w=10 at r=R/a=R, r:RZ/a___R_f_l. {2)
The boundary conditions at the entrance cross section of the pipe are assigned by the profiles of the
velocity components:
u=Uy(r), v=0, w=W,(r) at z=0. )
As the boundary conditions at the exit cross section of the pipe we take

ﬂ:av :@_!wa:o at z=L=LJa, (4)
0z 0z 0z

where L, is the length of the channel; b is some positive number, The effect of the boundary conditions at the
exit cross section can be judged from how much the solution changes with a change in b.

Boundary conditions will not be set up for the pressure, since later the pressure will be eliminated from
the system (1) and only the velocity field in the channel will be found.

As the parameters on which the solution of the stated problem depends we take the following: the geo-
metrical parameter R of the channel or the dimensionless radius of the inner cylinder, the Reynolds number
Re, the dimensionless length L of the channel, and the profiles U, and W, of the axial and azimuthal velocities
at the entrance,

A Poiseuille profile is chosen as the axial velocity profile U in the present report and we consider the
case when the radial variation of the azimuthal velocity component W, in the initial cross section z =0 within
the channel takes place in accordance with a rigid-body law while the conditions of attachment are satisfied
at the walls,

To characterize the quantifative relationship between the quantities u and w we introduce the quantity K,
defined as

Rt1 R+1
K (2) = ( w(r, z)dr [f u(r, z)dr]“l, K, = K(0).
R R

The purpose of the report is the determination of the dependence of the solution of Egs. (1) with the bound-
ary conditions (2)-(4) on the parameters R, Re, and K, at values of L large enough that the solutions at a given
length z, hardly vary with a further increase in L.
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For future convenience we introduce the stream function ¢ and the azimuthal component w of the curl;

1 oy 1 oy =av ou

= U=—— — e (5)

r or ‘ r or 0z or
Using (5), the system (1) can be converted to the form

() e
| i i) o

A
a0 [0 vy _ 9 ga_‘l}) _9 ii(ﬁ) __i[ﬁ 2oy Ou
[az(r Gr) ar(r dz 0z | Re 0z r or [Re or\ r /.

0z
Here the boundary conditions for the functions ¢, w, and w, which follow from (2)-(5), have the form

= 0.

P = s Uy(ryrdr at 2=0,
R

P=0 at r=R,
Rt
P= { Uy(ryrdr==1a r=R+ 1,
R
N =0 a z=1L,
oz )
(1):———% at 2:0,
or
@*:'O at z=1,
0z

w=0a r=R, r=R-+1,

O | by—0ar z—L.
0z

‘The values of w at the walls were replaced by their values at near-by points of the grid within the channel
in accordance with the equation

(@/r)p = [— 3 (Pxp — bp) A2 — (@np/rwp) (0-5r% + rpA + 0.5A%)] [r3 + 0.5rpA — A%/8]71. (8)

Here ¢p is the value of the function ¢ at the wall; ¢y p is the value of the function ¢ in the layer nearest the
wall; A is the radial step of the grid at the wall; rp is the radius of the wall, Equation (8) was derived from
assumptions concerning the possibility of a Taylor series expansion of the functions ¢ and w with respect to
the parameter A near the wall using the second and third equations of the system (6).

III. The system of differential equations (6) was solved by the finite-difference method based on a con-
servative scheme with one-sided approximation of the convective terms, allowing for the direction of flow [5].
The calculations were made by the Gauss—Seidel iteration method. The iterations were stopped when the fol-
lowing conditions were satisfied:

(- l=
r i r ij

max | (wr)}; — (wr)i 1< 1073,
i

1078,

— -4
n}&:_xl\p;‘i—lp;‘i H<Z 1074, ng;jix

where n is the number of the iteration; ¢jj is the value of the function ¢ at node (i, j) of the grid.

The calculations, carried out on a 21 X 11 grid (21 lengthwise and 11 radially), uniform along the z axis
and nonuniform radially (the law of radial variation of the step is parabolic) with Re =10, R =1, and L =2.1,
showed that the profiles of the azimuthal velocity, which is normalized to K;, hardly depend on K,. The results
of calculations for K; =6 are presented in Fig. la, A comparison of the profiles over the cross sections shows
that in the axial direction the stream can be arbitrarily divided into two regions: an initial section directly
adjacent to the entrance cross section, where a sharp change occurs in the azimuthal velocity profile from the
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Fig. 1., Variation of profiles along channel
axis: a) azimuthal velocity component w; b)
axial component u (Re =10, R =1, L =2.1,

KQ = 6).

assigned profile W, to its "natural" form, and a main section, where smooth variation of the generated "natu-
ral" profile occurs. The axial velocity profile varies smoothly from cross section to cross section along the
length of the channel. In the process the streamlines first shift toward the outer wall owing to the action of
centrifugal forces, while the velocity near the inner wall decreases somewhat. The dashed lines in Fig. 1b
correspond to § = const. Then the streamlines again approach the inner wall owing to the attenuation of the
azimuthal velocity along the length of the channel. The maximum of the axial velocity shifts in the same direc-
tion, With small values of K, these variations in axial velocity are small and the velocity profiles over the
cross sections hardly differ. With an increase in swirling a zone of stream separation develops which occupies
an ever larger region of flow as the swirling increases. The variation in the axial velocity component along
the z axis is presented in Fig, 1b for K, = 6, at which stream separation from the inner wall already occurs,
The point at which (8u/dz),, =0 or the axial component of the shear stress at the wall is 7y, = Re” (Eiu/ar)Z =0
was taken as the point of separatxon The shear stress

| T | = Re 1 [(Bu/0r)2 - (w/Or)?]!/2

and its axial component Ty at the inner and outer walls as functions of the distance z along the axis for dif-
ferent values of the swirling K, are presented in Fig, 2, It is seen from the graphs that with nonseparation

flow the contribution of the azimuthal component to the frictional stress is significant only in the initial section
(the dashed and solid curves 1, corresponding to Ky =1, almost coincide at z > 0,5). It is also seen that when
Re = 10and R=1 the quantity K, = 5 corresponds to a flow constant close to the separation value (the dashed
curve 2 almost fouches the abscissa), while with K; = 10 we obtain a region of separation corresponding to nega-
tivevalues of Tz (part of the dashed curve 3 is below the abscissa), with a zone of return currents like that
shown in Fig. 1b for K, =6 forming near the inner surface of the channel.

Analogous calculations were made for values of L greater than 2.1, The results proved to be similar,
For L =4, for example, the disagreements in the results of the calculation of K(z) for nonseparation flows at
a length z; =1.5 comprised fractions of a percent.

The influence of the grid on the solutions was studied. It was found that similar results are obtained for
grids with a weak nonuniformity. For a uniform 21 X 21 grid, for example, the results practically coincide
with those presented.

Systematic studies of the accuracy of the calculation scheme used showed that for Reynolds numbers in
the range from 10 to 10° the solutions do not depend on the step A of the grid with acceptable accuracy when
A = 10/Re. For A = 0.05, for example, the differences in the results are 1-2%.
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Fig. 2. Variation of frictional stress at inner wall with
different degrees of swirling: 1) K, =1; 2) 5; 3) 10; solid
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Fig. 3. Dependence of "critical swirling" on geometrical
parameter R and Reynolds number Re.
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Fig. 4, Variation of relative
stream swirling K/K; along
channel length (Re =10, R =1,
L=2):1,2, 3)Kg=1;b=0,

b =1, and b =10?, respectively,
4) Ky =10, b =0.

Flow calculations were also made for channels with different parameters R in the range from 0.5 to 4.0
and with Reynolds numbers in the range from 10 to 10%, The results did not vary qualitatively. The calcula-
tions showed that the degree of swirling K, at which separation first develops at the inner wall (we call it the
"critical swirling” K¥ depends on both parameters R and Re. The calculations also showed that for a fixed R
the point zx at which separation develops moves away monotonically from the initial cross section as Re in-
creases. Therefore, for Re > 10 the right-hand boundary conditions were set up at L. =10 or more and a non-
uniform grid along the z axis was used.

IV. From the calculations in the ranges of variation of Re and R cited above we obtained the dependence
K¥R, Re), which is presented in Fig. 3. It is seen from the graphs that for a fixed R separation sets in at
larger values of K, with smaller Reynolds numbers, which is explained by the stabilizing action of the viscosity
forces. It is also seen from the graphs that for each Reynolds number the stability of the flow against separa-
tion grows with an increase in R, since nonseparation flow must occur in the limiting case of R — %, On the
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other hand, with a decrease in R the profile of the axial velocity component becomes fuller in the vicinity of the
inner wall, and in this case one could expect a strengthening of its stability against separation, One must keep
in mind, however, than in this case along with the increase in the fullness of the profile near the inner wall
there is also an increase in the centrifugal force in proportion to R~!, the action of which is opposite to the in-
fluence of the profile. It is seen from Fig, 3 that K§ first declines slowly and then grows sharply as R — 0,
which should be expected from an estimate of the terms of the Navier —Stokes equations,

Actually, as R — 0 the maximum in the profile of the axial velocity component approaches the inner
wall, while the profile itself approaches the profile in a round pipe with the exception of some vicinity of the
point r = 0. Thus, the natural scale of length along the radius near the inner wall will be 6 =ry, — R, where
the axial velocity component varies from 0 to Upgx. When R <« 1 the quantity 6 < L, where L is the scale of
length along the z axis. With allowance for the fact that w = K§u, estimates in the equations of the system (1)
near separation show that for each fixed Reynolds number, as 6 — 0 there is a §; such that w « Re~16-2 occurs
for any 6 < 6;, and consequently the order of magnitude of the pressure will be p = Re~ 1672, In this case the
force action on the liquid in the radial direction will be determined by the projection of the pressure gradient
9p/dr and the centrifugal force. The latter must always remain in the equation, since it is the very cause of
the stream separation from the inner wall, Then w’r~! =~ 8p/or or K¥ ~6~'Re V2. Thus, for small enough &
the quantity K§ grows with a decrease in 6. It must be noted, however, that the growth of K¥ will actually be
bounded as R — 0, since stream separation can occur earlier due to instability relative to separation of the
flow profile outside the & layer. And this was observed in the numerical calculations. In this case for Re =
80 and R = 0.1 the quantity K§ proved to equal 1.84 and was close to its value calculated from the results of [4],
although flow with an even velocity profile at the entrance was studied in the latter.

In conclusion, we note that calculations were also made with different boundary conditions (4) in the exit
cross section. The quantity b was varied from 0 to 10?, The variation of the swirling K/ K, along the length
of the channel for Re = 10 and R = 1 is shown in Fig. 4. The calculations showed that the attenuation of the
swirling occurs in the same way for both nonseparation and separation flow when K, is close to K§. The varia-
tion of the swirling along the length of the channel with developed separation (K, = 10) is shown by a dashed line
in Fig. 4. It is also seen from the graphs that the influence of the form of the boundary conditions shows up
only in the immediate vicinity of the exit cross section of the channel. The picture does not change qualitatively
for other values of Re.

NOTATION

r, 2z are the radial and axial coordinates;
u, v, w are the axial, radial, and azimuthal velocity components;
Ry, Ry are the radii of inner and outer cylinders;

L¢ is the length of channel;
a is the characteristic dimension of the problem;
p is the pressure;
) is the density;
vand 4  are the coefficients of kinematic and dynamic viscosity;
Re is the Reynolds number;
Y is the stream function;
w is the azimuthal component of curl.
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