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N U M E R I C A L  STUDY OF L A M I N A R  

IN AN A N N U L A R  C H A N N E L  

V. V. T r e t ' y a k o v  and  V. I.  

S W I R L E D  F L O W  

Ya g o d k i n  UDC 532.527 

The effect of s tream rotation on the velocity distribution in an annular channel is studied by the 
numerical method. The degrees of swirling corresponding to the initiation of s t ream separation 
are presented as functions of the Reynolds number for different values of the geometrical param- 
eter  of the channel. 

I. It is known that the intensity of processes  of heat and mass  t ransfer  in annular channels and pipes in- 
creases  when swirled flows are used in them [1]. 

The attempts at an analytical solution of such problems are connected with certain simplifying assump- 
tions. For example, the problem of the development of PoiseuiUe flow in a straight round pipe with s tream 
rotation was solved in [2]. It was assumed that the changes in the flow caused by this rotation are small. This 
allowed the authors to solve the problem in a linear formulation. An approximate calculation of the develop- 
ment of swirled flow of a viscous incompressible liquid in a cylindrical pipe was the subject of [3], where as-  
sumptions were made that the radial velocity component and its derivative with respect  to the radius are small,  
as well as the assumption that the axial velocity component differs little from its average value over the cross 

section. 

Another approach to the solution of such problems is the numerical integration of the equations of motion 
of a viscous liquid. The velocity profiles of swirled flow in a round pipe were calculated in [4] using the method 
of [5]. It was found that the assumptions of [2] are not always satisfied. 
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article submitted December 20, 1976. 
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The numerical  method of calculation of [5] will also be used in the present  work. 

II. The steady laminar  flow of an incompress ible  liquid in a s t ra ight  annular pipe in the presence  of 
swirl ing of the s t r eam at the inlet is analyzed. It is assumed that the flow is rotationally symmet r i ca l ,  ex-  
ternal  mass  forces  are absent,  and the density p and coefficient of dynamic viscos i ty  p are  constants. 

In a cylindrical  coordinate sys tem the N a v i e r - S t o k e s  equations for such flow have the form 

Ou Op 1 Ou §  . . . .  + - -  
o 0---7 Oz Oz Re V u, 

av Ov w z _ a p §  1 ( v )  
a--; + u az r Or ~ vzv - - - - # -  ' 

Ow vw 1 (  _~_) am ~-u--+ _ __ v2 w- w , 
v Or ' dz r Re 

Or_§ v § au =0 .  
Or r az 

(1) 

Here u, v,  and w are the axial,  radial ,  and azimuthal velocity components,  respect ive ly ,  normal ized to the 
average value Uav of the axial component over the radius;  p is the p r e s s u r e ,  normal ized to PU2av; Re =Uav/V is 
the Reynolds number ,  calculated over  the width a =R 2 - R 1 of the annular gap; u is the coefficient of kinematic 
v i s c o s i t y ;  R 2 and R 1 are  the radii  of the outer and inner cyl inders ,  respect ively;  V 2= 82/8r 2 + r-~8/Sr + 82/~z 2. 
All the l inear dimensions are  normal ized to the charac te r i s t i c  dimension a of the problem. 

For  the flow under considerat ion the conditions of at tachment must  be satisfied at the walls:  

u = v = w = 0  at r = R i / a - - R ,  r = R z / a = R + l .  (2) 

The boundary conditions at the entrance c ross  section of the pipe are assigned by the profi les  of the 
velocity components:  

(3) 
u=U0(r ) ,  v = 0 ,  w=W0(r )  at z = 0 .  

As the boundary conditions at the exit c ross  section of the pipe we take 

au a v  a w  
-- -- -~-bw=O at z = L = L c / a ,  (4) 

az az az 

where L e is the length of the channel; b is some positive number.  The effect  of the boundary conditions at the 
exit c ross  section can be judged f rom how much the solution changes with a change in b. 

Boundary conditions will not be set  up for the p r e s s u r e ,  since la ter  the p re s su re  will be eliminated f rom 
the sys tem (1) and only the velocity field in the channel will be found. 

As the pa rame te r s  on which the solution of the stated problem depends we take the following: the geo- 
me t r i ca l  pa r ame te r  R of the channel or  the dimensionless  radius of the inner cylinder,  the Reynolds number 
Re,  the dimensionless  length L of the channel,  and the profi les  U 0 and W 0 of the axial and azimuthal  veloci t ies  
at the entrance.  

A Poiseuil le profile is chosen as the axial velocity profi le U 0 in the present  r epor t  and we consider the 
case when the radial  var ia t ion of the azimuthal  velocity component W 0 in the initial c ross  section z = 0 within 
the channel takes place in accordance  with a r igid-body law while the conditions of at tachment are  satisfied 
at the wails.  

To charac te r ize  the quantitative relat ionship between the quantities u and w we introduce the quantity K, 
defined as 

R+~ R+I  

R R 

The purpose of the repor t  is the determinat ion of the dependence of the solution of Eqs. (1) with the bound- 
a ry  conditions (2)-{4) on the p a r a m e t e r s  R,  Re,  and K 0 at values of L large enough that the solutions at a given 
length zl hardly  vary  with a fur ther  increase  in L. 
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F o r  fu ture  conven ience  we in t roduce  the s t r e a m  funct ion r and the az imutha l  componen t  w of the cur l :  

1 O~ 1 ~ Ov Ou 
u = - - - - ,  v =  , co= (5) 

r Or r Or Oz Or 

Using (5), the s y s t e m  (1) can be conve r t ed  to the f o r m  

0 (1 0r -o,=o, 

O rw - -  rw - -  = O, (6) 
O--z-- ~ - - ~ z  Re az W Re Or - 7  

rZ ~-z r Or / - -  ~-r r Oz - -  -~z _ Re Oz - -  -~r ~ r  7 -  . - -  r c)z . . . .  

Here  the boundary  condi t ions  f o r  the funct ions  r  w, and w,  which  follow f r o m  (2)-(5), have  the  f o r m  

r 

r = .I' U~ (r) rdr at z ~-- O, 
R 

~ - - 0  at r : R ,  

= .f Uo(r) r d r =  1 at r = R +  1, 
R 

B~ -=0 at z = L ,  
Oz 

OUo 
0 --- at Z : - 0 ,  

Or 

0o~ 
: 0  at z : L ,  

Oz 

r ~ : O  at r : R ,  r = R + l ,  

Ow - - - ~ - b w = O  at z = L .  
az 

(7) 

T h e  va lues  of w at the wal l s  w e r e  r e p l a c e d  by the i r  va lues  at  n e a r - b y  points  of  the g r id  within the channel  
in a c c o r d a n c e  with the equat ion  

(o/r)p = [- -  3 (*NP - -  *P) A-2 - -  ((~ (0"5r~ -]- rpA + 0.5A~)] [r~ + 0.5rph - -  hZ/8]-l. (8) 

H e r e  ~0p is the va lue  of  the funct ion ~o at  the wal l ;  q~NP is the value of  the funct ion ~0 in the l a y e r  n e a r e s t  the 
wal l ;  A is the r ad ia l  s tep  of  the gr id  at  the wal l ;  r p  is the rad ius  of  the wal l .  Equat ion (8) was  de r ived  f r o m  
a s s u m p t i o n s  conce rn ing  the poss ib i l i t y  of  a T a y l o r  s e r i e s  expans ion  of  the funct ions  $ and r with r e s p e c t  to 
the p a r a m e t e r  & n e a r  the wal l  u s ing  the second  and th i rd  equa t ions  of the s y s t e m  (6). 

III.  The  s y s t e m  of d i f fe ren t ia l  equa t ions  (6) was  so lved  by the f i n i t e -d i f f e r ence  method  based  on a con-  
s e rva t i ve  s c h e m e  with o n e - s i d e d  app rox ima t ion  of the convec t ive  t e r m s ,  a l lowing fo r  the d i r ec t ion  of  flow [5]. 
The ca lcu la t ions  w e r e  made  by the G a u s s - S e i d e l  i t e ra t ion  method.  The i t e r a t i ons  w e r e  s topped when the fo l -  
lowing condi t ions  w e r e  sa t i s f i ed :  

max ( ~  10: -8, 
max I * ~ -  *Tzll < 10 ' ,  7 -  ,j ~ r j , j  

max 1 (wr)~ - -  (wr)~-I l < 10 -8, 
q 

whe re  n is the n u m b e r  of the i t e ra t ion ;  ~oij is the value  of the funct ion 9 at  node (i, j) of the grid.  

The ca l cu la t ions ,  c a r r i e d  out on a 21 x 11 gr id  (21 l engthwise  and 11 rad ia l ly ) ,  un i fo rm  along the z axis  
and nonun i fo rm r ad i a l l y  (the law of  r ad ia l  v a r i a t i o n  of  the s tep is pa rabo l ic )  with Re = 10, R = 1, and L =2 .1 ,  
showed that  the p ro f i l e s  of the az imutha l  ve loc i t y ,  which is n o r m a l i z e d  to K0, ha rd ly  depend on K 0. The r e s u l t s  
of  ca lcu la t ions  fo r  K 0 =6 a re  p r e s e n t e d  in Fig.  la .  A c o m p a r i s o n  of the p ro f i l e s  ove r  the c r o s s  sec t ions  shows 
that  in the axial  d i r ec t i on  the s t r e a m  can be a r b i t r a r i l y  divided into two r eg ions :  an init ial  sec t ion  d i r e c t l y  
ad jacen t  to the e n t r a n c e  c r o s s  sec t ion ,  whe re  a sha rp  change o c c u r s  in the az imutha l  ve loc i ty  prof i le  f r o m  the 
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Fig.  1. Var ia t ion  of p ro f i l e s  along channel  
axis :  a) az imutha l  ve loc i ty  component w;  h) 
ax ia l  c o m p o n e n t  u (Re = 10, R = 1,  L = 2 .1 ,  

K o = 6}. 

a s s igned  p rof i l e  W 0 to i ts  "na tura l"  f o r m ,  and a main  sec t ion ,  where  smooth va r i a t i on  of the genera ted  "na tu -  
r a l "  p rof i le  occu r s .  The axia l  ve loc i ty  prof i le  v a r i e s  smooth ly  f rom c r o s s  sec t ion  to c r o s s  sec t ion  along the 
length of the channel.  In the p r o c e s s  the s t r e a m l i n e s  f i r s t  shif t  toward  the outer  wal l  owing to the act ion of 
cen t r i fuga l  f o r c e s ,  while the ve loc i ty  nea r  the inner  wal l  d e c r e a s e s  somewhat .  The dashed l ines  in Fig .  l b  
c o r r e s p o n d  to r = const .  Then the s t r e a m l i n e s  again approach  the inner  wal l  owing to the a t tenuat ion of the 
az imutha l  ve loc i ty  along the length of the channel.  The max imum of the axia l  ve loc i ty  shif ts  in the same d i r e c -  
tion. With s m a l l  va lues  of K 0 these  v a r i a t i o n s  in ax ia l  ve loc i ty  a re  s m a l l  and the ve loc i ty  p ro f i l e s  over  the 
c r o s s  sec t ions  ha rd ly  dif fer .  With an i n c r e a s e  in swi r l i ng  a zone of s t r e a m  sepa ra t i on  develops  which occupies  
an eve r  l a r g e r  r eg ion  of flow as the swi r l i ng  i n c r e a s e s .  The va r i a t i on  in the axia l  ve loc i ty  component along 
the z axis  is  p r e s e n t e d  in Fig .  lb  for  K 0 = 6, a t  which s t r e a m  sepa ra t i on  f rom the inner  wai l  a l r e a dy  occurs .  
The point  at  which (3u/0Z)z , = 0 or  the ax ia l  component  of the shea r  s t r e s s  a t  the wal l  is 7wz = Re- l (Su /S r ) z ,  = 0 
was taken as  the point  of sepa ra t ion .  The s h e a r  s t r e s s  

i ~w I = R e-1 [(Ou/Or) 2 -F (8w/ar)~] I/2 

and i ts  ax ia l  component  TWZ at the inner  and outer  wa l l s  as  functions of the d is tance  z along the axis  for  d i f -  
f e ren t  va lues  of the swi r l ing  K 0 a r e  p r e s e n t e d  in Fig .  2. It is  seen f rom the graphs  that  with nonsepara t ion  
flow the contr ibut ion of the az imutha l  component  to the f r i c t iona l  s t r e s s  is  s igni f icant  only in the in i t ia l  sec t ion  
(the dashed and sol id  curves  1, co r r e spond ing  to K 0 = 1, a l m o s t  coincide at  z > 0.5). I t  is a l so  seen that  when 
Re = 1 0 a n d R = l  the quanti ty K 0 = 5 c o r r e s p o n d s  to a flow constant  c lose to the sepa ra t ion  value (the dashed 
curve 2 a l m o s t  touches  the a b s c i s s a ) ,  while with K 0 = 10 we obtain a reg ion  of s epa ra t ion  co r re spond ing  to nega-  
t i v e v a l u e s  of TWZ (par t  of the dashed  curve 3 is  below the a b s c i s s a ) ,  with a zone of r e tu rn  c u r r e n t s  l ike that  
shown in Fig .  l b  for  K 0 = 6 fo rming  nea r  the inner  sur face  of the channel.  

Analogous ca lcu la t ions  were  made for  va lues  of L g r e a t e r  than 2.1. The r e s u l t s  proved to be s i m i l a r .  
F o r  L =4, for  e x a m p l e ,  the d i s a g r e e m e n t s  in the r e s u l t s  of the ca lcula t ion  of K(z) for  nonsepara t ion  flows at  
a length z 1 = 1.5 c o m p r i s e d  f r ac t ions  of a percen t .  

The influence of the gr id  on the solut ions was studied.  It was found that  s i m i l a r  r e s u l t s  a re  obtained for  
g r ids  with a weak  nonuniformity.  F o r  a uniform 21 • 21 g r id ,  for  example ,  the r e s u l t s  p r a c t i c a l l y  coincide 
with those p re sen ted .  

Sys temat i c  s tudies  of the a c c u r a c y  of the ca lcula t ion  scheme used showed that  for  Reynolds  numbers  in 
the range f rom 10 to 10 ~ the solut ions do not depend on the s tep A of the gr id  with acceptab le  accu racy  when 
/x ___ 10/Re. F o r / x  = 0.05, for  example ,  the d i f f e rences  in the r e s u l t s  a re  1-2%. 
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Fig. 2. Variation of frictional stress at inner wall with 
different degrees of swirling: 1) K 0 = 1; 2) 5; 3) i0; solid 
curves) total shear  s t r e s s  ( I r w I); dashed curves)  its axial 
component rwz. 

Fig. 3. Dependence of "cr i t ica l  swirling" on geometr ical  
pa r ame te r  R and Reynolds number  Re. 

\ \  

Fig. 4. Variat ion of relat ive 
s t r eam swirl ing K/K 0 along 
channel length (Re = 10, R = 1, 
L = 2 ) :  1, 2, 3) K 0 = l ; b =  0, 
b = 1, and b = 102, respec t ive ly ,  
4) K 0 =10, b =0. 

Flow calculations were also made for channels with different pa r ame te r s  R in the range f rom 0.5 to 4.0 
and with Reynolds numbers  in the range f rom 10 to 103. The resul ts  did not va ry  qualitatively. The calcula-  
tions showed that the degree of swirl ing K0 at which separat ion f i r s t  develops at the inner wall (we call it the 
"cr i t i ca l  swirling" K~) depends on both p a r a m e t e r s  R and Re. The calculations also showed that for  a fixed R 
the point z ,  at which separat ion develops moves away monotonically f rom the initial c ross  section as Re in- 
c reases .  Therefore ,  for Re > 10 the r ight-hand boundary conditions were set up at L =10 or  more  and a non- 
uniform grid along the z axis was used. 

IV. F rom the calculations in the ranges  of variat ion of Re and R cited above we obtained the dependence 
K~(R, Re), which is presented in Fig. 3. It is seen f rom the graphs that for a fixed R separat ion sets  in at 
l a rge r  values of K 0 with smal le r  Reynolds numbers ,  which is explained by the stabilizing action of the viscosi ty  
forces .  It is also seen f rom the graphs that for  each Reynolds number the stability of the flow against  s epa r a -  
tion grows with an increase  in R, since nonseparat ion flow must  occur  in the limiting case of R -* ~o. On the 

186 



other  hand, with a dec rease  in R the profile of the axial velocity component  becomes fuller in the vicinity of the 
inner wall ,  and in this case one could expect  a strengthening of its stability against  separation. One must  keep 
in mind, however ,  than in this case along with the increase  in the fullness of the profile near  the inner wall 
there  is also an increase  in the centrifugal  force in propor t ion to R -1, the action of which is opposite to the in- 
fluence of the profile.  It is seen f rom Fig. 3 that K~ f i r s t  declines slowly and then grows sharply as R -~ 0, 
which should be expected f rom an es t imate  of the t e r m s  of the N a v i e r - S t o k e s  equations. 

Actually,  as R -~ 0 the maximum in the profile of the axial velocity component approaches the inner 
wall ,  while the profile i tself  approaches  the profile in a round pipe with the exception of some vicinity of the 
point r = 0. Thus,  the natural  scale of length along the radius near  the inner wall will be 6 = r m - R, where 
the axial veloci ty component var ies  f rom 0 to Uma x. When R << 1 the quantity 6 << L, where L is the scale of 
length along the z axis. With allowance for the fact  that w ~ K0*u, es t imates  in the equations of the sys tem (1) 
near  separat ion show that for each fixed Reynolds number ,  as 6 - -  0 there  is a 61 such that w << Re-16 -2 occurs  
for  any 6 < 61, and consequently the o rde r  of magnitude of the p re s su re  will be p ~ Re-16 -2. In this case the 
force  action on the liquid in the radial  direct ion will be determined by the project ion of the p r e s s u r e  gradient  
8p/Sr and the centrifugal force.  The la t ter  must  always remain  in the equation, since it is the very  cause of 
the s t r eam separat ion f rom the inner wall. Then w2r -1 ~ 8p/Sr or K~ ~ 6-1Re -t/2. Thus,  for small  enough 5 
the quantity K~ grows with a decrease  in 5. It must  be noted, however ,  that the growth of K~ will actuaUy be 
bounded as R ~ 0, since s t r eam separat ion can occur  ea r l i e r  due to instability relat ive to separat ion of the 
flow profile outside the 6 layer .  And this was observed in the numerica l  calculations. In this case for  Re = 
80 and R = 0.1 the quantity K~ proved to equal 1.84 and was close to its value calculated f rom the resu l t s  of [4], 
although flow with an even veloci ty profile at the entrance was studied in the latter.  

In conclusion,  we note that calculations were also made with different boundary conditions (4) in the exit 
c ross  section. The quantity b was var ied  f rom 0 to 10 2. The var iat ion of the swirl ing K/K 0 along the length 
of the channel for Re = 10 and R = 1 is shown in Fig. 4. The calculations showed that the attenuation of the 
swirl ing occurs  in the same way for  both nonseparat ion and separat ion flow when K 0 is close to KS. The v a r i a -  
tion of the swirl ing along the length of the channel with developed separat ion (K 0 = 10) is shown by a dashed line 
in Fig. 4. It is also seen f rom the graphs that the influence of the fo rm of the boundary conditions shows up 
only in the immediate vicinity of the exit c ross  section of the channel. The picture does not change qualitatively 
for other values of Re. 
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N O T A T I O N  

are the radial  and axial coordinates;  
a re  the axial,  radial ,  and azimuthal  veloci ty components;  
are  the radii  of inner and outer cyl inders ;  
is the length of channel; 
is the cha rac te r i s t i c  dimension of the problem; 
is the p r e s s u r e ;  
is the density; 
are  the coefficients of kinematic and dynamic viscosi ty ;  
is the Reynolds number;  
is the s t r eam function; 
is the azimuthal  component of curl. 
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